Artificial Intelligence Used to Develop Virtual Interventional Radiology Consultant

 

March 8, 2017—The Society of Interventional Radiology (SIR) announced the presentation of a study on artificial intelligence technology to power a machine learning application that helps guide patients’ interventional radiology care. The research was conducted by interventional radiologists at the University of California at Los Angeles (UCLA) and presented at the SIR 2017 annual scientific meeting in Washington, DC.

The investigators used artificial intelligence to create a “chatbot” interventional radiologist that can automatically communicate with referring clinicians and quickly provide evidence-based answers to frequently asked questions. This allows the referring physician to provide real-time information to the patient about the next phase of treatment or basic information about an interventional radiology treatment. This prototype is currently being tested by a small team of hospitalists, radiation oncologists, and interventional radiologists at UCLA.

"We theorized that artificial intelligence could be used in a low-cost, automated way in interventional radiology as a way to improve patient care," explained researcher Edward W. Lee, MD, who is Assistant Professor of Radiology at UCLA’s David Geffen School of Medicine, in the SIR announcement. "Because artificial intelligence has already begun transforming many industries, it has great potential to also transform health care.” The study abstract (#354), “Utilization of Deep Learning Techniques to Assist Clinicians in Diagnostic and Interventional Radiology: Development of a Virtual Radiology Assistant,” can be found at sirmeeting.org.

The investigators used "deep learning" to understand a wide range of clinical questions and respond appropriately in a conversational manner similar to text messaging. Deep learning is a technology inspired by the workings of the human brain, where networks of artificial neurons analyze large datasets to automatically discover patterns and “learn” without human intervention. Deep learning networks can analyze complex datasets and provide rich insights in areas such as early detection, treatment planning, and disease monitoring, noted SIR.

Study investigator Kevin Seals, MD, who is a resident physician in radiology at UCLA, is the programmer of the application. In the SIR announcement, Dr. Seals commented, “This research will benefit many groups within the hospital setting. Patient care team members get faster, more convenient access to evidence-based information, interventional radiologists spend less time on the phone and more time caring for their patients, and, most importantly, patients have better-informed providers able to deliver higher-quality care.”

The UCLA team enabled the application to develop a foundation of knowledge by feeding it more than 2,000 example data points simulating common inquiries interventional radiologists receive during a consultation. Through this type of learning, the application can instantly provide the best answer to the referring clinician’s question. The application resembles online customer service chats, noted SIR.

The responses can include information in various forms, including websites, infographics, and custom programs. If the tool determines that an answer requires a human response, the program provides the contact information for a human interventional radiologist. As clinicians use the application, it learns from each scenario and progressively becomes smarter and more powerful.

The investigators used Natural Language Processing technology implemented with IBM’s Watson artificial intelligence computer, which can answer questions posed in natural language and perform other machine learning functions.

As the application continues to improve, investigators aim to expand the work to assist general physicians in interfacing with other specialists, such as cardiologists and neurosurgeons. Implementing this tool across the health care spectrum has great potential in the quest to deliver the highest-quality patient care, noted Dr. Lee in the SIR press release.

John Hegde, MD, resident physician in radiation oncology at UCLA, stated, “I believe this application will have phenomenal potential to change how physicians interact with each other to provide more efficient care. A key point for me is that I think it will eventually be the most seamless way to share medical information. Although it feels as easy as chatting with a friend via text message, it is a really powerful tool for quickly obtaining the data you need to make better-informed decisions.”

 

Contact Info

For advertising rates and opportunities, contact:
Craig McChesney
484-581-1816
cmcchesney@bmctoday.com

Stephen Hoerst
484-581-1817
shoerst@bmctoday.com

Charles Philip
484-581-1873
cphillip@bmctoday.com

About Endovascular Today

Endovascular Today is a publication dedicated to bringing you comprehensive coverage of all the latest technology, techniques, and developments in the endovascular field. Our Editorial Advisory Board is composed of the top endovascular specialists, including interventional cardiologists, interventional radiologists, vascular surgeons, neurologists, and vascular medicine practitioners, and our publication is read by an audience of more than 22,000 members of the endovascular community.