A chronic total occlusion (CTO) is present in nearly 50% of all patients undergoing endovascular treatment of infrainguinal peripheral arteries. The presence of a CTO has been associated with a lower procedural success rate, longer procedure times, and higher radiation doses and contrast loads. As a busy cardiovascular surgeon in the southern United States who treats this patient population, I present a case that illustrates my treatment strategy when managing this difficult clinical challenge.

CASE REPORT
A 61-year-old African American woman presented with complaints of bilateral lower extremity claudication in November 2018. She had a history of hypertension, non–insulin-dependent diabetes mellitus, breast cancer, gout, and she was an everyday smoker. Her in-office ankle-brachial index (ABI) was 0.62 mm Hg for the right leg and 0.39 mm Hg for the left leg. We discussed smoking cessation and a walking program, and she was given a prescription for pentoxifylline. As is my practice for these patients, a CTA of the abdomen and pelvis with runoff was ordered in anticipation of peripheral intervention to decrease potential procedure time, contrast load, and radiation exposure at the time of the procedure.

The patient’s next visit was in early December, and the results of her CTA showed a series of lesions in the left leg: a high-grade lesion of the distal left common iliac artery (CIA), ≥75% stenosis of the mid-segment of the left external iliac artery (EIA), high-grade stenosis with near-occlusive changes at the origin of the left superficial femoral artery (SFA), multifocal stenotic changes with occlusion of the mid-SFA and reocapacification of a small popliteal artery via collaterals, and multifocal stenoses of the runoff vessels and occlusion of the left posterior tibial artery. She had rigorously followed her exercise regimen since her last visit and was in the process of quitting smoking, down to two or three cigarettes per day. She reported that her legs were feeling better and opted to continue with conservative management.

The next visit was in January 2019. Her in-office ABI was stable in the right leg at 0.62 mm Hg and was 0.53 mm Hg in the left leg. The patient had successfully quit smoking and agreed to endovascular intervention in the left leg.

At the time of the procedure, the right femoral artery was cannulated, and a 5-F sheath was placed. A Glidewire™ (Terumo Interventional Systems) and a renal bifurcation iliac catheter RBI (renal, bifurcation, iliac) catheter™* (Merit Medical Systems, Inc.) were advanced to the infrarenal aorta. Angiography was performed showing a tight lesion of the distal left CIA, a 70% lesion of the mid-EIA, and a 90% lesion at the orifice of the left internal iliac artery (A). The mid-EIA lesion was stented with an EverFlex™ self-expanding stent and postdilated with an 8- X 30-mm balloon (B).

Figure 1. Angiography revealed a tight lesion of the distal left CIA, a 70% lesion of the mid-EIA, and a 90% lesion at the orifice of the left internal iliac artery (A). The mid-EIA lesion was stented with an EverFlex™ self-expanding stent and postdilated with an 8- X 30-mm balloon (B).
systemically heparinized. An 8- X 27-mm Visi-Pro™ balloon-expandable stent (Medtronic) was deployed in the CIA with no residual stenosis seen. The lesion in the mid-EIA was then stented with an EverFlex™ self-expanding stent (Medtronic) and was postdilated with the 8- X 30-mm balloon (Figure 1B).

Runoff imaging was then performed on the left femoral artery, showing a high-grade lesion at the origin of the left SFA (Figure 2A) and a CTO in the mid-SFA extending to the popliteal artery (Figure 2B). This reconstituted in the behind-the-knee popliteal artery via collaterals and there was one-vessel runoff to the foot via the anterior tibial artery. A long 7-F sheath was advanced from the right groin, across the newly stented CIA and EIA, and to the left femoral artery. To avoid entanglement in the newly placed stents, we used a 0.035-inch Glidewire with a preformed J-tip. The Glidewire and a TrailBlazer™ support catheter (Medtronic) were advanced through the tight lesion in the proximal SFA to reach the mid-SFA above the CTO. Interarterial nitroglycerin (1 mL; 200 µg) was administered via the TrailBlazer support catheter followed by 2 mg of tissue plasminogen activator to pretreat the CTO.

A selective SFA angiogram showed that the lesion was long and heavily calcified with mature well-formed collaterals. Based on these findings, we used the Viance™ crossing catheter (Medtronic) and advanced it through the TrailBlazer™ catheter, with a 0.014-inch Hi-Torque Spartacore™* guidewire (Abbott Vascular) inserted into the Viance crossing catheter to lend support. The Viance crossing catheter successfully passed to the level of the popliteal artery but appeared to be in a subintimal plane. To regain luminal access, an Enteer™ re-entry catheter (Medtronic) was advanced over the 0.014-inch Hi-Torque Spartacore wire to the popliteal artery. Magnified images were taken from multiple planes before attempting re-entry. The images showed that the Enteer re-entry catheter was a short distance away from the popliteal artery wall, suggesting that we were not in the subintimal plane but had passed down a collateral. The Enteer re-entry catheter was withdrawn.

We again attempted to use the Viance crossing catheter to find the true lumen of the CTO. While the Viance crossing catheter, TrailBlazer support catheter, and Spartacore wire were eventually able to engage the true lumen of the CTO, we could not advance further than midway through the lesion. At this point, the TrailBlazer support catheter was left in place and the Viance crossing catheter and Spartacore wire were removed. The 0.035-inch Glidewire with the preformed J-tip was advanced through the TrailBlazer support catheter. The Glidewire and TrailBlazer support catheter traversed the remaining length of the CTO into the true lumen of the popliteal artery. An angiogram confirmed proper placement within the artery and facilitated placement of a 5-mm SpiderFX™ embolic protection device (Medtronic).

We performed directional atherectomy with the HawkOne™ LX directional atherectomy system (Medtronic) throughout the entire SFA and proximal popliteal arteries, followed by percutaneous transluminal angioplasty (PTA) of the entire SFA and proximal popliteal arteries with a 5- X 300-mm Pacific™ Xtreme PTA balloon dilatation catheter (Medtronic) over the SpiderFX filter wire. A completion angiogram showed a widely patent SFA, although it still had heavy calcification and luminal irregularity at the site of the CTO in the mid to distal left SFA (Figure 3A) and maintained good one-vessel runoff to the foot via the anterior tibial artery (Figure 3B). We decided to stent the calcified area of the distal SFA to prevent restenosis. This was accomplished with a 7- X 120-mm EverFlex self-expanding stent. The completion angiogram now showed widely patent SFA and popliteal...
arteries (Figure 4). The bilateral femoral sheaths were removed using MYNX™
closure devices (Cordis, a Cardinal Health company).

The patient was extremely happy at her follow-up visit. She no longer had any symp-
toms of claudication, was continuing her exercise pro-
gram, and had successfully quit smoking.

DISCUSSION

CTOs are defined as completely occluded arterial segments of ≥ 3 months
duration. Femoropopliteal and infrapopliteal artery
CTOs are present in up to 50% of patients with claudica-
tion or critical limb ischemia.¹,³ CTOs of the SFA, popliteal,
or tibial arteries require interventions that are more techni-
cally challenging, with more periprocedural complications
and lower rates of procedural success compared with
lesions that are not completely occluded. Despite these
challenges, the ability to successfully treat CTOs is nearly
obligatory for an endovascular specialist.⁴ CTOs are com-
plex lesions that can widely vary among patients, and there
is not a universal “right” way to proceed, more a series of
choices dependent on both preprocedural characteristics
and intraprocedural events, as shown in the algorithm in
Figure 5.

Multiple variables have been associated with failure to
cross a CTO, including long lesion length, failure to pen-
etrate the proximal cap, inability to navigate side branches
or bridging collaterals, and inability to re-enter the distal
true lumen. Dense fibrous caps and heavy calcification
that often characterize CTOs have also been associated
with failure to cross.¹,² When I encounter a CTO with one
or more of these characteristics, I tend to choose a Viance
crossing catheter versus a traditional wire catheter. When
starting with the Viance crossing catheter, you can always
change course and convert to the wire catheter technique if
needed, as happened in this case. But the opposite is less true:
using the crossing catheter after failing with a wire catheter is
less successful. This is supported by a study that showed how
a guidewire could cross 96% of CTOs after a Viance crossing
catheter failed, but that a Viance crossing catheter could only
cross 50% of CTOs after a guidewire failed.¹ If the only way to
cross the CTO is in the subintimal plane, I use a re-entry device
to access the true lumen.

Once across the lesion and in the true lumen, I gener-
ally perform vessel prep with directional atherectomy
before proceeding with PTA (Figure 6). This treatment
strategy is beneficial because it removes plaque, improves
luminal diameter, and leaves nothing behind in the native
artery, preserving future treatment options if restenosis
occurs. The DEFINITIVE LE study demonstrated that treat-
ment with directional atherectomy was safe and effective
through 12 months.⁵ If the completion angiogram shows
residual stenosis or a clinically significant dissection after
intervention, I place a stent to cover the area of concern.

Multiple techniques are often required to cross a CTO,
as in this case, where the crossing catheter was needed to
pass the proximal cap and traditional wire catheter tech-
niques were used to cross the remainder of the CTO. In
cases where the lesion cannot be crossed in an antegrade
fashion, the next step is to proceed with pedal or alterna-
tive access for a retrograde approach. We would use similar
crossing catheters or wire catheter techniques, depending
on the characteristics of the lesion.

Above all, the most important thing to remember is that
CTOs are challenging but manageable. There are multiple
tools and strategies for the interventionalist to use, and there
is no universal “right” way to approach each unique case.

Contraindications:

Visi-Pro™ balloon-expandable peripheral stent system

- Lower Extremity (LE) Interventions
- Caution:
 - Federal (USA) law restricts this product for sale by or on the order of a physician.
- Important Information: Indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device.

Indications for Use:

- The HawkOne™ peripheral directional atherectomy system is intended for use in a vessel in the anatomy of the peripheral vasculature. The HawkOne catheter is not intended for use in the coronary, carotid, iliac or renal vasculature.
- The SpiderFX™ embolic protection device is indicated for use as a guidewire and embolic protection system to contain and remove embolic material in conjunction with the TurboHawk™ Peripheral Plaque Excision System, either during standalone procedures or together with PTA and/or stenting in the treatment of severely calcified lesions in arteries of the lower extremities. The vessel diameter at the filter basket placement site should be between 3.0 mm and 6.6 mm.
- The Enteer™ re-entry catheter is indicated for directing, steering, supporting a guide wire during access of the vasculature, allow access to discrete regions of the peripheral vasculature. When used as part of the peripheral system, the Enteer catheter is intended for use to facilitate the placement of conventional guidewires beyond stenotic peripheral lesions (including chronic total occlusions) prior to placement of other interventional devices.

Potential Adverse Events:

- Potential adverse events which may be associated with the use of a stent in the iliac arteries include, but are not limited to: post-stent or sub-acute closure; Allergic reaction to 316L stainless steel; Allergic reaction to device materials or procedure medications; Amputation, Artery perforation or rupture; Bleeding requiring transfusion; Contrast medium reaction/renal failure; Death; Device breakage; Embolic: Failure to deploy stent; Fever; Gastrointestinal bleeding due to anticoagulant, Hematoma, Hypertension/Hypotension; Infection; Inflammation; Intraluminal thrombus; Myocardial infarction; Paradoxical embolism; Perforation or rupture; Perforation at the angioplasty site; Peritoneal perforation; Post-procedural complications; Pseudoaneurysm; Renal insufficiency; Restenosis; Septus, Shock; Stent collapse or fracture; Stent migration; Stent misplacement; Stroke; Surgically or endovascular intervention; Thrombosis/occlusion of the stent; Transient increase in glomerular filtration rate; Transient ischemic attack; Venous thromboembolism; Vessel spasm; Worsening claudication or rest pain.

- See the Instructions for Use provided with the product for a complete list of warnings, precaution, adverse events and device information.
- CAUTION: Federal (USA) law restricts these devices to sale by or on the order of a physician.
- Viance catheter Reference Statement
- Important Information: indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device.

Indications for Use:

- The Viance™ catheter is intended for use with a guidewire to access discrete regions of the peripheral vasculature. When used as part of the peripheral system, the Viance catheter is intended for use to facilitate the placement of conventional guidewires beyond stenotic peripheral lesions (including chronic total occlusions) prior to placement of other interventional devices.

- Caution: Federal (USA) law restricts this product for sale by or on the order of a physician.
- Enteri™ re-entry catheter reference statement
- Important Information: Indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device.

Indications for Use:

- The Enteri™ re-entry catheter is indicated for directing, steering, controlling and supporting a guidewire in order to access discrete regions of the peripheral vasculature. When used as part of the Peripheral System, the Enteri Catheter is indicated for use to facilitate the intraluminal placement of conventional guidewires beyond stenotic peripheral lesions (including chronic total occlusions) prior to placement of other interventional devices.

- Caution: Federal (USA) law restricts this product for sale by or on the order of a physician.

Contraindications:

- Use of the Enteri™ re-entry catheter is contraindicated in patients with known hypersensitivity to nickel- titanium and in patients contraindicated for anticoagulant and/or antiplatelet therapy; patients who are judged to have a lesion that prevents complete inflation of an angioplasty balloon or proper placement of the stent or stent delivery system.

- Trailing™ support catheter reference statement
- Important Information: Indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device.

Indications for Use:

- Trailing™ support catheters are percutaneous, single lumen catheters designed for use in the peripheral vascular system. Trailing™ support catheters are intended to guide and support a guide wire during access of the vasculature, allow for wire exchanges and provide a conduit for the delivery of saline solutions or diagnostic contrast agents.

- Caution: Federal (USA) law restricts these devices to sale by or on the order of a physician.

© 2019 Medtronic. All rights reserved. Medtronic, Medtronic logo and Further Together are trademarks of Medtronic. Third party brands are trademarks of their respective owners. All other brands are trademarks of a Medtronic company.