IN.PACT SFA Trial: Overview of Study Design and 2-Year Clinical Outcomes

Sustained durability of IN.PACT™ Admiral™ DCB treatment effect with no late catch-up through 2 years.

BY PETER A. SCHNEIDER, MD

The IN.PACT SFA Trial is a level 1 clinical evidence trial evaluating the safety and effectiveness of the IN.PACT™ Admiral™ drug-coated balloon (DCB; Medtronic, Inc.) versus standard percutaneous transluminal angioplasty (PTA) for the treatment of superficial femoral artery (SFA) and proximal popliteal artery lesions. The IN.PACT SFA Trial was designed with utmost attention to clinical rigor, including external adjudication of major adverse events by an independent clinical events committee and interpretation of target lesion restenosis by independent angiographic and duplex ultrasound (DUS) core laboratories, as well as external monitoring (Table 1). The 2-year data from the IN.PACT SFA Trial were recently presented at the Transcatheter Cardiovascular Therapeutics (TCT) conference in October 2015 and simultaneously published in the Journal of the American College of Cardiology.1

The primary efficacy endpoint for IN.PACT SFA was primary patency, defined as freedom from clinically driven target lesion revascularization (CD-TLR) and DUS-derived restenosis (peak systolic velocity ratio [PSVR] ≤ 2.4) at 12 months and reported again at 24 months. The primary safety endpoint was a composite of freedom from device- and procedure-related mortality at 30 days and freedom from major target limb amputation and clinically driven target vessel revascularization (CD-TVTR) at 12 months and reported again at 24 months. Select baseline, lesion, and procedural characteristics of the patients enrolled in the IN.PACT SFA Trial are shown in Table 2.

<table>
<thead>
<tr>
<th>TABLE 1. IN.PACT SFA TRIAL DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type</td>
</tr>
<tr>
<td>Primary endpoints</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rigor and quality</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
</tr>
<tr>
<td>No. of sites and location</td>
</tr>
<tr>
<td>Key eligibility criteria</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ABI, ankle-brachial index; CTO, chronic total occlusion; ISR, in-stent restenosis; TBI, tibial-brachial index.

*Freedom from CD-TLR1 and DUS-derived restenosis (PSVR ≤ 2.4) at 12 months.
†Freedom from device- and procedure-related death through 30 days and freedom from major target limb amputation and CD-TVTR through 12 months.
‡Defined as reintervention at target lesion due to symptoms or drop of ABI/TBI of ≥ 20% or > 0.15 when compared to postprocedure baseline ABI/TBI.
DCB COMES OF AGE

Intended for markets where mentioned products and indications are approved.

PATIENT POPULATION

The baseline clinical characteristics of patients enrolled in the IN.PACT SFA Trial are comparable to those of other SFA pivotal trials with a few notable exceptions. The mean lesion length of 8.9 cm is relatively long in the landscape of pivotal SFA populations, and the low provisional stenting rate of 7.3% may have been achieved through the procedural protocol of predilatation with a standard PTA balloon prior to a nominal pressure, 3-minute inflation with the DCB.

TWO-YEAR OUTCOMES FROM IN.PACT SFA

Figure 1 shows a Kaplan-Meier analysis of primary patency in the DCB and PTA arms of the IN.PACT SFA Trial. At 24 months, 78.9% of patients in the DCB group achieved primary patency compared to 50.1% who underwent standard PTA ($P < 0.001$).

Figure 2 shows a Kaplan-Meier analysis of freedom from CD-TLR in the DCB and PTA arms of the IN.PACT SFA Trial. At 24 months, 91.0% of patients in the DCB group were free of CD-TLR compared to only 72.2% in the PTA group.

Table 3 compares safety and additional efficacy outcomes at 24 months in the two arms of the IN.PACT SFA Trial. Data indicate significant improvement in most outcomes for the DCB arm as compared with the PTA arm. The results of DCB use in IN.PACT SFA are remarkably good, despite the fact that lesions were longer (mean lesion length, 8.9 cm) in this trial than in previous randomized DCB trials. One of the most striking findings from IN.PACT SFA at 24 months was the remarkably low CD-TLR rate (9.1%), which is lower than rates reported in previous SFA device trials at the...

TABLE 2. IN.PACT SFA TRIAL PATIENT AND PROCEDURAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DCB arm (n = 220)</th>
<th>PTA arm (n = 111)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>65.0% (143/220)</td>
<td>67.6% (75/111)</td>
<td>0.713</td>
</tr>
<tr>
<td>Diabetes</td>
<td>40.5% (89/220)</td>
<td>48.6% (54/111)</td>
<td>0.161</td>
</tr>
<tr>
<td>Hypertension</td>
<td>91.4% (201/220)</td>
<td>88.3% (98/111)</td>
<td>0.431</td>
</tr>
<tr>
<td>Current smoker</td>
<td>38.6% (85/220)</td>
<td>36.0% (40/111)</td>
<td>0.719</td>
</tr>
<tr>
<td>Lesion length, cm</td>
<td>8.94 ± 4.89</td>
<td>8.81 ± 5.12</td>
<td>0.815</td>
</tr>
<tr>
<td>Total occlusions</td>
<td>25.8% (57/221)</td>
<td>19.5% (22/113)</td>
<td>0.222</td>
</tr>
<tr>
<td>Calcification</td>
<td>59.3% (131/221)</td>
<td>58.4% (66/113)</td>
<td>0.907</td>
</tr>
<tr>
<td>Severe calcification</td>
<td>8.1% (18/221)</td>
<td>6.2% (7/113)</td>
<td>0.662</td>
</tr>
<tr>
<td>Provisional stenting</td>
<td>7.3% (16/220)</td>
<td>12.6% (14/111)</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Figure 1. Kaplan-Meier analysis of primary patency in the DCB and PTA arms of the IN.PACT SFA Trial. Number at risk represents the number of evaluable subjects at the beginning of the 30-day window prior to each follow-up interval.

Figure 2. Kaplan-Meier analysis of freedom from CD-TLR in the DCB and PTA arms of the IN.PACT SFA Trial. Number at risk represents the number of evaluable subjects at the beginning of the 30-day window prior to each follow-up interval.
DCBs: Cost-Effective Option for Treating Atherosclerosis in the SFA

IN.PACT SFA cost-effectiveness substudy finds the IN.PACT Admiral DCB is economically dominant compared to PTA.

Cost considerations are increasingly important when evaluating new endovascular treatment strategies. As a result, cost-effectiveness analyses are more commonly performed in parallel with clinical safety and efficacy studies to provide health care decision makers with further insight into the economic effectiveness of new technologies.

Recently, the positive results from the IN.PACT SFA cost-effectiveness substudy were presented at VIVA 2015. This prospectively designed analysis evaluated costs and quality-adjusted life-years (QALYs) over 24 months of follow-up between the drug-coated balloon (DCB) and percutaneous transluminal angioplasty (PTA) arms in the US cohort of the pivotal study and found that the IN.PACT™ Admiral™ DCB (Medtronic, Inc.) is an “economically dominant” (ie, highly cost-effective per QALY) strategy for the treatment of superficial femoral artery (SFA) disease compared to PTA.

Although the initial procedural cost is higher for patients treated with a DCB versus PTA, the data analysis demonstrated that the postdischarge costs (ie, additional physician fees, medications, and hospitalizations) were higher for PTA within the 2-year study period as compared with IN.PACT Admiral DCB, eliminating the early cost advantage of PTA (Figure 1). Results of this analysis confirm earlier models, which used published literature reviews to predict that DCBs would have the lowest 2-year total cost compared to various treatment strategies for the SFA, largely due to the significant difference in target lesion revascularization rates over 2 years of follow-up (Figure 2).

IN.PACT Admiral DCB is a proven primary therapy for SFA disease; the latest durable safety, efficacy, and cost-effectiveness results will continue to drive a paradigm shift in SFA interventions.

Figure 1. Analysis from the IN.PACT SFA economic substudy showed that postdischarge costs were higher for PTA as compared with IN.PACT Admiral DCB with the 2-year study period. *Winsorized—Costs for one extreme outlier reduced to next highest value.

Figure 2. Two-year total cost of DCBs compared to various treatment strategies for the SFA.

Academia

Total Costs Through 2 Years*

<table>
<thead>
<tr>
<th>IN.PACT DCB</th>
<th>Standard PTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10,656</td>
<td>$11,359</td>
</tr>
</tbody>
</table>

Δ = $703 (P = 0.613)

TLR: Weighted Average of 24-month Reported Rates

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA</td>
<td>39.6%</td>
</tr>
<tr>
<td>BMS</td>
<td>26.9%</td>
</tr>
<tr>
<td>DES</td>
<td>19.4%</td>
</tr>
<tr>
<td>DCB</td>
<td>15.9%</td>
</tr>
<tr>
<td>Medtronic IN.PACT DCB*</td>
<td>11.2%</td>
</tr>
</tbody>
</table>

Qualitative comparison for illustration purposes only. Not meant for head-to-head comparison.
*Results from Medtronic IN.PACT DCB’s only
same time point. Although there were no device- or procedure-related deaths in either arm of the trial, the rate of all-cause mortality in the DCB group was higher than that in the PTA group (8.1% vs 0.9%; \(P = 0.008 \)). The 0.9% all-cause mortality rate in the PTA group was anomalously low for this population, and the median post–index days to death was 564.5 days in the DCB arm and 397.0 days in the PTA arm, confirming that deaths were not related to the device or procedure. The clinical events committee adjudicated all deaths and also confirmed that none of the deaths were device- or procedure-related.

In a subgroup analysis, 2-year results also showed clinical superiority and consistency across various patient types that have been proven difficult to treat based on historical data, including patients with diabetes and the female population. The 24-month primary patency rates for gender and diabetic subgroups are shown in Table 4.

COMMENTARY

The key takeaway on the 2-year data from the IN.PACT SFA Trial is the lack of catch-up effect on both primary patency and CD-TLR. If anything, the
groups may have diverged just a little, and this goes a
long way toward alleviating concern about the efficacy
of this “minimal implant” approach to SFA disease.
The absolute difference in primary patency between
DCB and PTA at 2 years was 28.8% (78.9% vs 50.1%).
By all measures, PTA was well conducted, rigorous, and
performed as prescribed, and the results in the PTA
group were in line with the best that PTA has to offer.
Despite this, the advantage in the DCB arm remained
significant and did not decrease. With respect to
CD-TLR, the difference between the groups was 18.2%
at 1 year (2.4% vs 20.6%). There was some concern
that there may have been bias in the DCB group, with
some resistance to reintervention until after the all-
important 1-year endpoint. There was no rush to rein-
tervention in the DCB group, and at 2 years, the abso-
lute difference between the DCB and PTA groups was
19.2% and actually increased slightly (9.1% vs 28.3%,
respectively).

The broader body of SFA data has matured signifi-
cantly over the past 5 years. These data show that
some consideration of the use of antiproliferative
drugs will be included in day-to-day management of
most patients going forward. The major emphasis on
implant-based therapy for SFA disease in recent years
must be called into question at this point.

Earlier DCB data from other studies of female
patients suggested a lesser effect than in males. In
IN.PACT SFA at 2 years, the patency benefits were
dramatic in both genders and were about the same
magnitude in males and females. Diabetic patients had
lower patency rates than nondiabetic patients for both
PTA and DCB, but the magnitude of the patency ben-
efit was similar in both diabetics and nondiabetics.
The higher mortality rate in the DCB arm of the
trial is the one anomaly. This cannot be dismissed
and requires more study as DCB data are collected;
however, a common sense look at the data is useful.
The mortality rate in the comparative group of PTA
patients of 0.9% (among only 111 patients) was very
low compared to what is expected in this population,
which is usually 5% to 10%. All-cause mortality among
the DCB patients was 8.1%, more consistent with what
is usually seen. None of the deaths occurred in the
early period after use, and most were beyond 1 year
of follow-up. Paclitaxel is one of the most commonly
used chemotherapeutic agents worldwide, and usually
at much higher doses, and there is no identified link
with increased mortality.

This premarket approval study was extremely use-
ful for identifying medication effect and offers a lot
of promise for this therapy. The US Food and Drug
Administration rapidly reviewed the data once they
were accumulated. The lesion lengths and types are
consistent with previous SFA studies and, if any-
thing, the lesion lengths were more challenging in
IN.PACT SFA than some recent studies. More informa-
tion about the “real world” can be elucidated with the
IN.PACT Global Study, which allows for evaluation of
longer, more complex lesions and those more chal-
lenging to the therapy.

CONCLUSION
The IN.PACT SFA Trial provides rigorous indepen-
dently adjudicated level 1 evidence supporting DCB
therapy for patients with disease in the SFA and proxi-
mal popliteal arteries. At 24 months, the IN.PACT
Admiral DCB demonstrates durability and continued
superiority of DCB treatment effect, including strong
primary patency and low CD-TLR. Additionally,
IN.PACT Admiral proves a strong safety profile, with
statistically superior outcomes relative to PTA. The
IN.PACT Admiral DCB is a proven primary therapy for
SFA disease, and these clinical results will drive a para-
digm shift in SFA intervention.

Peter A. Schneider, MD, is Chief of Vascular Therapy,
Kaiser Foundation Hospital, Honolulu, Hawaii. He has
stated that he has no financial interests related to this
article. Dr. Schneider may be reached at peterschneidermd@
aol.com.

femoropopliteal lesions: 24-month results of IN.PACT SFA [published online ahead of print October 10, 2015].
J Am Coll Cardiol.